Pareto iterative learning control: Optimized control for multiple performance objectives

نویسندگان

  • Ingyu Lim
  • Kira L. Barton
چکیده

Iterative learning control (ILC) is a 2-degree-of-freedom technique that seeks to improve system performance along the time and iteration domains. Traditionally, ILC has been implemented to minimize trajectory-tracking errors across an entire cycle period. However, there are applications in which the necessity for improved tracking performance can be limited to a few specific locations. For such systems, a modified learning controller focused on improved tracking at the selected points can be leveraged to address multiple performance metrics, resulting in systems that exhibit significantly improved behaviors across a wide variety of performance metrics. This paper presents a pareto learning control framework that incorporates multiple objectives into a single design architecture. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control

This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Multiple objective optimal control of integrated urban wastewater systems

Integrated modelling of the urban wastewater system has received increasing attention in recent years and it has been clearly demonstrated, at least at a theoretical level, that system performance can be enhanced through optimized, integrated control. However, most research to date has focused on simple, single objective control. This paper proposes consideration of multiple objectives to more ...

متن کامل

Iterative Learning Algorithm based on Observer and Linear Quadratic Performance Function

In this paper we propose an iterative learning algorithm based on observer and linear quadratic performance function. We calculate the initial control value for the iteractive learning algorithm based on the estimation of the states, which guarantees the efficient asymptotic tracking of any desired trajectories. Furthermore, with Linear quadratic optimal control theory, we obtain the optimized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015